Efficient Structured Language Modeling for Speech Recognition
نویسندگان
چکیده
The structured language model (SLM) of [1] was one of the first to successfully integrate syntactic structure into language models. We extend the SLM framework in two new directions. First, we propose a new syntactic hierarchical interpolation that improves over previous approaches. Second, we develop a general information-theoretic algorithm for pruning the underlying Jelinek-Mercer interpolated LM used in [1], which substantially reduces the size of the LM, enabling us to train on large data. When combined with hill-climbing [2] the SLM is an accurate model, space-efficient and fast for rescoring large speech lattices. Experimental results on broadcast news demonstrate that the SLM outperforms a large 4-gram LM.
منابع مشابه
Allophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملPractical and Efficient Incorporation of Syntactic Features into Statistical Language Models
Automatic Speech Recognition (ASR) and Statistical Machine Translation (SMT), among other natural language processing applications, rely on a language model (LM) to provide a strong linguistic prior over word sequences of the often prohibitively large and complex hypothesis space of these systems. The language models deployed in most state-of-the-art ASR and SMT systems are n-gram models. Sever...
متن کاملStructured language modeling
This paper presents an attempt at using the syntactic structure in natural language for improved language models for speech recognition. The structured language model merges techniques in automatic parsing and language modeling using an original probabilistic parameterization of a shift-reduce parser. A maximum likelihood re-estimation procedure belonging to the class of expectation-maximizatio...
متن کاملVisual Recognition of American Sign Language Using Hidden Markov Models
Hidden Markov models (HMM's) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently , they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. We describe an HMM-based system for recognizing sentence level American Sign Language (ASL) which attains a word accuracy of 99...
متن کاملReal-Time American Sign Language Recognition from Video Using Hidden Markov Models
Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal f o r visual recognition of complex, structured hand gestures such as are found in sign language. We describe a real-time HMM-based system for recognizing sentence level American Sign Language (ASL) which attains a word accu...
متن کامل